字符串数据处理
- Pandas中提供了字符串的函数,但只能对字符型变量进行使用
- 通过str方法访问相关属性
- 可以使用字符串的相关方法进行数据处理
函数名称 | 说明
- | – |
contains() | 返回表示各str是否含有指定模式的字符串
replace() | 替换字符串
lower() | 返回字符串的副本,其中所有字母都转换为小写
upper() | 返回字符串的副本,其中所有字母都转换为大写
split() | 返回字符串中的单词列表
strip() | 删除前导和后置空格
join() | 返回一个字符串,该字符串是给定序列中所有字符串的连接
import pandas as pd
import numpy as np
import os
os.getcwd()
'D:\\Jupyter\\notebook\\Python数据清洗实战\\数据清洗之数据转换'
os.chdir('D:\\Jupyter\\notebook\\Python数据清洗实战\\数据')
df = pd.read_csv('MotorcycleData.csv', encoding='gbk')
df.head(5)
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border=”1″ class=”dataframe”>
<thead>
<tr style="text-align: right;">
<th></th>
<th>Condition</th>
<th>Condition_Desc</th>
<th>Price</th>
<th>Location</th>
<th>Model_Year</th>
<th>Mileage</th>
<th>Exterior_Color</th>
<th>Make</th>
<th>Warranty</th>
<th>Model</th>
<th>...</th>
<th>Vehicle_Title</th>
<th>OBO</th>
<th>Feedback_Perc</th>
<th>Watch_Count</th>
<th>N_Reviews</th>
<th>Seller_Status</th>
<th>Vehicle_Tile</th>
<th>Auction</th>
<th>Buy_Now</th>
<th>Bid_Count</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>Used</td>
<td>mint!!! very low miles</td>
<td>$11,412</td>
<td>McHenry, Illinois, United States</td>
<td>2013.0</td>
<td>16,000</td>
<td>Black</td>
<td>Harley-Davidson</td>
<td>Unspecified</td>
<td>Touring</td>
<td>...</td>
<td>NaN</td>
<td>FALSE</td>
<td>8.1</td>
<td>NaN</td>
<td>2427</td>
<td>Private Seller</td>
<td>Clear</td>
<td>True</td>
<td>FALSE</td>
<td>28.0</td>
</tr>
<tr>
<th>1</th>
<td>Used</td>
<td>Perfect condition</td>
<td>$17,200</td>
<td>Fort Recovery, Ohio, United States</td>
<td>2016.0</td>
<td>60</td>
<td>Black</td>
<td>Harley-Davidson</td>
<td>Vehicle has an existing warranty</td>
<td>Touring</td>
<td>...</td>
<td>NaN</td>
<td>FALSE</td>
<td>100</td>
<td>17</td>
<td>657</td>
<td>Private Seller</td>
<td>Clear</td>
<td>True</td>
<td>TRUE</td>
<td>0.0</td>
</tr>
<tr>
<th>2</th>
<td>Used</td>
<td>NaN</td>
<td>$3,872</td>
<td>Chicago, Illinois, United States</td>
<td>1970.0</td>
<td>25,763</td>
<td>Silver/Blue</td>
<td>BMW</td>
<td>Vehicle does NOT have an existing warranty</td>
<td>R-Series</td>
<td>...</td>
<td>NaN</td>
<td>FALSE</td>
<td>100</td>
<td>NaN</td>
<td>136</td>
<td>NaN</td>
<td>Clear</td>
<td>True</td>
<td>FALSE</td>
<td>26.0</td>
</tr>
<tr>
<th>3</th>
<td>Used</td>
<td>CLEAN TITLE READY TO RIDE HOME</td>
<td>$6,575</td>
<td>Green Bay, Wisconsin, United States</td>
<td>2009.0</td>
<td>33,142</td>
<td>Red</td>
<td>Harley-Davidson</td>
<td>NaN</td>
<td>Touring</td>
<td>...</td>
<td>NaN</td>
<td>FALSE</td>
<td>100</td>
<td>NaN</td>
<td>2920</td>
<td>Dealer</td>
<td>Clear</td>
<td>True</td>
<td>FALSE</td>
<td>11.0</td>
</tr>
<tr>
<th>4</th>
<td>Used</td>
<td>NaN</td>
<td>$10,000</td>
<td>West Bend, Wisconsin, United States</td>
<td>2012.0</td>
<td>17,800</td>
<td>Blue</td>
<td>Harley-Davidson</td>
<td>NO WARRANTY</td>
<td>Touring</td>
<td>...</td>
<td>NaN</td>
<td>FALSE</td>
<td>100</td>
<td>13</td>
<td>271</td>
<td>OWNER</td>
<td>Clear</td>
<td>True</td>
<td>TRUE</td>
<td>0.0</td>
</tr>
</tbody>
</table>
<p>5 rows × 22 columns</p>
</div>
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7493 entries, 0 to 7492
Data columns (total 22 columns):
Condition 7493 non-null object
Condition_Desc 1656 non-null object
Price 7493 non-null object
Location 7491 non-null object
Model_Year 7489 non-null float64
Mileage 7468 non-null object
Exterior_Color 6778 non-null object
Make 7489 non-null object
Warranty 5109 non-null object
Model 7370 non-null object
Sub_Model 2426 non-null object
Type 6011 non-null object
Vehicle_Title 268 non-null object
OBO 7427 non-null object
Feedback_Perc 6611 non-null object
Watch_Count 3517 non-null object
N_Reviews 7487 non-null object
Seller_Status 6868 non-null object
Vehicle_Tile 7439 non-null object
Auction 7476 non-null object
Buy_Now 7256 non-null object
Bid_Count 2190 non-null float64
dtypes: float64(2), object(20)
memory usage: 1.3+ MB
# 里面有字符串,不能进行转换
# df['Price'].astype(float)
# .str 方法可用于提取字符
df['Price'].str[1:3].head(5)
0 11
1 17
2 3,
3 6,
4 10
Name: Price, dtype: object
# 首先要对字符串进行相关处理
df['价格'] = df['Price'].str.strip('$')
df['价格'].head(5)
0 11,412
1 17,200
2 3,872
3 6,575
4 10,000
Name: 价格, dtype: object
df['价格'] = df['价格'].str.replace(',', '')
df['价格'].head(5)
0 11412
1 17200
2 3872
3 6575
4 10000
Name: 价格, dtype: object
df['价格'] = df['价格'].astype(float)
df['价格'].head(5)
0 11412.0
1 17200.0
2 3872.0
3 6575.0
4 10000.0
Name: 价格, dtype: float64
df.dtypes
Condition object
Condition_Desc object
Price object
Location object
Model_Year float64
Mileage object
Exterior_Color object
Make object
Warranty object
Model object
Sub_Model object
Type object
Vehicle_Title object
OBO object
Feedback_Perc object
Watch_Count object
N_Reviews object
Seller_Status object
Vehicle_Tile object
Auction object
Buy_Now object
Bid_Count float64
价格 float64
dtype: object
# 字符串分割
df['Location'].str.split(',').str[0].head(5)
0 McHenry
1 Fort Recovery
2 Chicago
3 Green Bay
4 West Bend
Name: Location, dtype: object
# 计算字符串的长度
df['Location'].str.len().head(5)
0 32.0
1 34.0
2 32.0
3 35.0
4 35.0
Name: Location, dtype: float64
正文完